

Элементы математической статистики

Черных А.А., преподаватель математики и информатики, ОГБПОУ «Ангарский медицинский колледж», 2017 Статистика — наука, изучающая количественные стороны массовых явлений в конкретных условиях места и времени.

Математическая статистика – раздел математики, посвященный методам систематизации, обработки и исследования статистических данных для научных и практических выводов.

Основные понятия:

Генеральная совокупность — это совокупность всех однородных объектов, подлежащих изучению.

Выборочная совокупность (выборка) — это совокупность объектов, случайно отобранных из генеральной совокупности.

Объём совокупности (генеральной или выборочной) — это число её объектов.

Из 10 000 студентов института психологии тестируют 100 человек.

Генеральная совокупность:

студенты института психологии.

Объём генеральной совокупности:

N = 10 000

Выборочная совокупность:

тестируемые студенты.

Объём выборочной совокупности:

N = 100

Пусть в результате п испытаний получены следующие значения СВ, расположенные в неубывающем порядке:

$$x_1, x_2, x_3, \dots, x_n,$$

где
$$x_1 \le x_2 \le x_3 \le \cdots \le x_n$$

Последовательность наблюдаемых значений, записанных в неубывающем порядке, называется вариационным рядом, а сами значения x_i — вариантами.

Среди вариант могут оказаться равные, тогда результат испытаний можно представить в виде таблицы:

x_i	x_1	<i>x</i> ₂	• • •	x_k
n_i	n_1	n_2	• • •	n_k
w_i	w_1	w_2	• • •	w_k
где $x_1 \le x_2 \le x_3 \le \cdots \le x_k$				

Перечень вариант, записанных в возрастающем порядке, и соответствующих им частот (или относительных частот), называется статистическим распределением выборки.

$$x_k - x_1$$
 — размах выборки

n_i — частота появления x_i

$$\sum_{i=1}^{k} n_i = n$$

w_i — относительная частота x_i

$$w_i = \frac{n_i}{n}$$

$$\sum_{i=1}^{\kappa} w_i = 1$$

Пример 1: Ежедневное количество студентов, посещающих методический кабинет на протяжении ряда дней, следующее: 15, 17, 16, 18, 20, 21, 18, 17, 20, 15, 18, 17, 16, 19, 17, 16, 18, 19, 18, 19. Составить статистическое распределение выборки.

Решение:

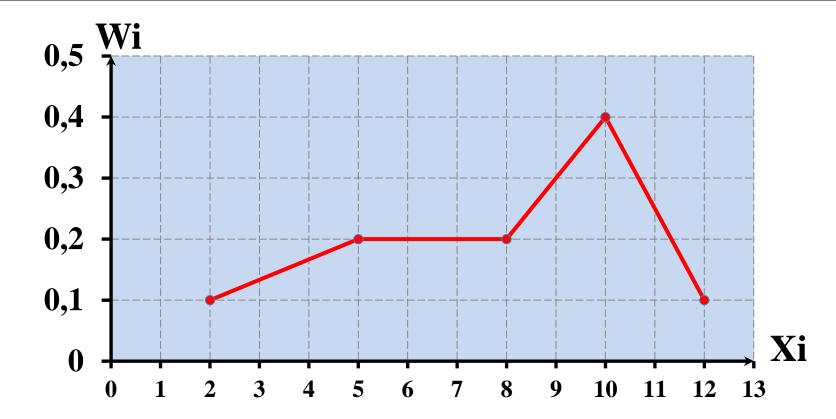
Объём выборки равен n = 20.

Вариационный ряд: 15, 16, 17, 18, 19, 20, 21.

Статистическое распределение выборки имеет вид:

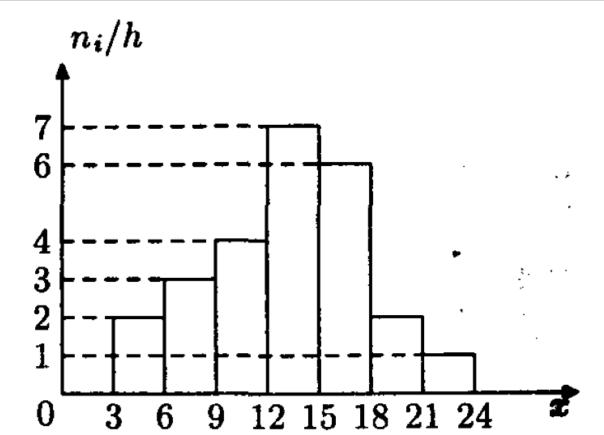
Значение							
признака	15	16	17	18	19	20	21
x_i							
Частота	2	3	1	5	2	2	1
n_i	2	3	†	7	3	2	1
Относительная	2						
частота	$\frac{1}{20} = \frac{1}{20}$	0,15	0,2	0,25	0,15	0,1	0,05
$w_i - \frac{n_i}{n_i}$	20	0,13	0,2	0,23	0,13	0,1	0,05
n	=0,1						

Статистическое распределение выборки может быть изображено графически — в виде полигона и гистограммы:


Полигоном частот называется ломаная, отрезки которой соединяют точки $(x_1; n_1), ..., (x_k; n_k)$.

Полигоном относительных частот называется ломаная, отрезки которой соединяют точки $(x_1; w_1), ..., (x_k; w_k)$.

Гистограммой частот называется ступенчатая фигура, состоящая из прямоугольников с основанием $\mathbf{h} = \mathbf{x_i} - \mathbf{x_{i-1}}$ и высотами $\mathbf{n_i}/\mathbf{h}$ (плотность частоты).


Пример 2. Построить полигон относительных частот статистического распределения:

x_i	2	5	8	10	12
w_i	0,1				

Пример 3. Построить гистограмму частот распределения объёма n = 75.

h=3	[3;6]	[6;9]	[9;12]	[12;15]	[15;18]	[18;21]	[21;24]
n_i	6	9	12	21	18	6	3
$\frac{n_i}{h}$	$\frac{6}{3}=2$	3	4	7	6	2	1

- Построение полигонов и гистограмм позволяет произвести первичный анализ экспериментальных данных, а именно:
- ❖По форме гистограммы сделать предположение о законе распределения СВ;
- ❖Выявить наиболее часто встречающиеся значения исследуемой величины и разброс или отклонение относительно этого значения.

Характеристики положения и рассеяния статистического распределения.

Выборочная средняя:

$$\overline{x_{\mathrm{B}}} = \sum_{i=1}^{k} x_i \cdot w_i$$

Характеристики положения и рассеяния статистического распределения.

Выборочная дисперсия:

$$D_{\mathrm{B}} = \sum_{i=1}^{k} x_i^2 \cdot w_i - \overline{x_{\mathrm{B}}}^2$$

Характеристики положения и рассеяния статистического распределения.

Выборочное среднее квадратическое отклонение:

$$\sigma_{\rm B} = \sqrt{D_{\rm B}}$$

Пример 4. При проверке успеваемости факультета были выборочно протестированы 50 обучаемых, распределившихся по результатам тестирования следующим образом:

x_i	6	7	8	9	10
n_i	6	13	16	10	5
w_i	0,12	0,26	0,32	0,2	0,1

 x_i — балл

 n_i — количество обучаемых с данным баллом

Найдем выборочную среднюю:

$$\overline{x_{\mathrm{B}}} = \sum_{i=1}^{k} x_i \cdot w_i =$$

$$= 6 \cdot 0.12 + 7 \cdot 0.26 + 8 \cdot 0.32 + 9 \cdot 0.2 + 10 \cdot 0.1 =$$

$$= 7,9$$

Найдем выборочную дисперсию:

$$D_{\rm B} = \sum_{i=1}^{k} x_i^2 \cdot w_i - \overline{x_{\rm B}}^2 =$$

$$= 6^2 \cdot 0.12 + 7^2 \cdot 0.26 + 8^2 \cdot 0.32 + 9^2 \cdot 0.2 + 10^2 \cdot 0.1 - 7.9^2 =$$

$$= 36 \cdot 0.12 + 49 \cdot 0.26 + 64 \cdot 0.32 + 81 \cdot 0.2 + 100 \cdot 0.1 - 62.41 =$$

$$= 4.32 + 12.74 + 20.48 + 16.2 + 10 - 62.41 = 1.33$$

Найдем выборочное среднее квадратическое отклонение:

$$\sigma_{\rm B} = \sqrt{D_{\rm B}} = \sqrt{1,33} \approx 1,15$$

Если значения СВ заданы в виде интервалов – так называемый интервальный ряд, - то в качестве значений х_і берутся середины соответствующих интервалов.

Пример 5. Оценка проксемической характеристики – дистанции между партнерами.

Некто N собрал следующий статистический материал, касающийся дистанции при его общении с другими людьми в течение недели. Найти выборочную среднюю дистанции общения.

Вид общения	Расстояние (см)	Относительная частота
Интимное (общение близких людей)	0 – 45	0,3
Персональное (общение со знакомыми)	45 – 120	0,2
Социальное (официальное общение)	120 – 400	0,1
Публичное (выступление перед аудиторией)	400 - 750	0,4

Решение:

$$x_1 = \frac{0+45}{2} = 22,5$$

$$x_2 = \frac{45 + 120}{2} = 82,5$$

$$x_1 = \frac{120 + 400}{2} = 260$$

$$x_1 = \frac{400 + 750}{2} = 575$$

x_i	22,5	82,5	260	575
w_i	0,3	0,2	0,1	0,4

$$\bar{x_{\rm B}} = \sum_{i=1}^{\kappa} x_i \cdot w_i = 22.5 \cdot 0.3 + 82.5 \cdot 0.2 + 260 \cdot 0.1 + 575 \cdot 0.4 =$$

$$= 279.25 \text{ (cm)}$$

Вопросы для самоконтроля

- 1. Что такое статистика? Математическая статистика?
- 2. Перечислите основные задачи математической статистики.
- 3. Что такое генеральная и выборочная совокупность? Объём выборки?
- 4. Что такое вариационный ряд, варианта, размах выборки, частота, относительная частота.
- 5. Объясните понятие статистического ряда распределения.
- 6. Перечислите основные характеристики статистического распределения.
- 7. По каким формулам вычисляются основные характеристики статистического распределения?
- 8. Что такое полигон частот и гистограмма?

Список используемой литературы

- 1. Математика: учебник для студ. образоват. учреждений сред. проф. Образования/С.Г. Григорьев, С.В. Иволгина; под ред. В.А. Гусева. 8-е изд., стер. М.: Издательский центр «Академия», 2012. 416 с.
- 2. Математика для психологов: учеб. пособие для студентов вузов/ А.В. Ганичева, В.П. Козлов. М.: Аспект Пресс, 2005. 239 с.